The Effect of Mental Imaging Technique on Idiom Comprehension in EFL Learners

Burcu AYDIN

ABSTRACT

In an English Foreign Language learning context, where access to native-like use of metaphorical language is limited, gaining this ability becomes challenging. For many years, foreign language educators didn’t pay much attention to idiomatic language and assumed that idioms could only be taught through rote learning. For this reason, they face difficulties in using appropriate approaches to idiom instruction. Furthermore, learners struggle with comprehending and practicing idioms. To resolve the concern, linguists are trying to develop cognitive approaches to the teaching of idiomatic language. The purpose of this study is to provide educators with guidelines to choose the appropriate idiom teaching technique for English Foreign Language learners taking into account the learners’ metaphorical competence level and their cognitive style preferences. In evaluating the appropriate teaching technique, three different techniques (context out, context in and mental imaging technique) were used. The participants were presented 50 idioms. As a first technique, context out, idioms were taught with their definitions in the dictionary without additional contextual support. As a second technique, context in, in an attempt to investigate the effect of contextual support, idioms were both presented in a sentence and with their definitions. As a third technique, mental imaging technique, in an attempt to investigate the effect of Dual Coding approach, both pictorial representations of a mapping of literal senses of each idiomatic expression and verbal support (the definition of the idiom and the sentence in which the idiom is used) were used concurrently. The findings point that mental imaging technique has positive effect on learning and recalling of the idiomatic expressions as it provides simultaneous verbal information with mental image which creates a supplementary pathway for recollecting the verbal information. In contrast, the results indicate no effect of preferred cognitive style on idiom learning and recalling among intervention groups.

Key Words: Idiom Comprehension, Mental Imaging Technique, English Foreign Language, Dual Coding Theory.

1. Introduction

Metaphorical language which requires processing the figurative meaning rather than the literal meaning of components constitutes a great part of everyday language use. To use idioms, which occur so frequently in spoken and written English, accurately and fluently is a big challenge for second language learners (Nippold, 1991; Gibbs & Colston, 2012). In an English as a foreign language (EFL) learning context, where access to native-like use of metaphorical language is limited, gaining this ability becomes very complicated. Furthermore, as teaching and learning processes of figurative language are very complicated, foreign language educators face with difficulties in using appropriate approaches to idiom instruction.

How learners comprehend metaphorical meanings is a significant debate in cognitive linguistics. One widely accepted belief is that metaphorical language is more difficult to understand than literal speech.

1 Asst. Prof. Dr., Adnan Menderes University, burcuaydin03@yahoo.com.
because metaphorical language are patterned and related with literal sense. Gibbs (2011) stated that when metaphorical language seen in isolation, it takes longer to understand than literal ones, but when encountered in realistic discourse contexts, figurative speech can be understood as quickly as literal speech.

For many years, foreign language teachers did not pay as much attention as it deserved to idiomatic language and it was neglected in classroom teaching and it was assumed that idioms could only be taught through rote learning. However, Baddeley (1999) stated that rote repetition of idiomatic expressions does not lead to learning. Moreover, Liu (2003) stated that the idioms taught in formal instruction are seldom used ones and because of a lack of social discourse their inaccurate meaning and usage are given. Consequently, it is a challenging task for both educators and learners. For this reason, in recent years, linguists are trying to develop cognitive approaches to the teaching of idiomatic language (Boers, 2004; Grant, 2007; Szczepaniak & Lew, 2011).

Dual Coding Theory, which was created by Allan Paivio, is a cognitive model that has suggestions for the practice of educational psychology. It is a sophisticated educational instructional approach that investigates how humans can process information by using visual and verbal channels simultaneously. It suggests that there are two self-regulating pathways for encoding information into long memory, one visual and one verbal (Paivio, Walsh, & Bons, 1994; Shen, 2010; Welcome, Paivio, McRae & Joanisse, 2011). Both channels cause the person to gain better understanding of the information. Sadoski and Paivio (2013) stated that Dual Coding Theory has contributed significantly to the scientific explanation and prediction of literacy phenomena and educational applications based on Dual Coding Theory continue to show strong results. Cuevas (2016) stated that in language processing, dual coding predicts that retention should increase if visual stimuli or imagery are combined in addition to linguistic processing. Because visual stimuli, beyond linguistic processing, will be an addictive, supportive effect and form another storage mechanism for long term memory. Clark and Paivio, (1991) emphasize that concreteness, imagery, verbal associative processes play vital roles in the representation and comprehension of knowledge, learning and memory of school material. Sadoski (2005) summarized in his review article that Dual Coding Theory accounts for some of the most effective vocabulary learning strategies that have been devised for both sight word learning and the learning of meaningful vocabulary. Boers et al. (2009) stated that according to Dual Coding Theory, association of verbal information with mental image is advantageous as it provides an additional pathway for recollecting the verbal information.

Boers et al. (2007) investigated the effects of image-based pedagogy on idiom learning and examined the mnemonic effect of pictorials on the acquisition of meaning and form of L2 idioms. The results of their study showed that verbal definitions combined with pictorial clues facilitated the retention of idiom meanings. In consistence with this study, Szczepaniak and Lew (2011) investigated the usefulness of pictorial illustrations and etymological notes in idiom dictionaries. They found that although pictorial illustrations have a facilitative role on retention of both form and meaning of idioms, etymological notes do not have any positive effect. In contrast, Vasiljevic (2015) evaluated the effects of perceptual and mental imagery on the rate of retention of meaning and form of L2 idioms. The results of his study indicated that etymological notes given for idioms supported the retention of idiom meaning while pictorial support of idioms improved the recall of linguist form.
Researchers also stated that second language learners have tendency in processing idioms literally rather than figuratively. (Cieślicka, 2006; Abel, 2003; Gluckberg, 2001; Van de Voort & Vonk, 1995) The findings of these researchers led to an idea that idiomatic meanings are processed diversely in native and non-native speakers.

For this reason in this study it is hypothesized that Turkish speaking EFL learners will interpret the literal meanings as they are more salient for them. Also it is hypothesized that learners with developed visual reasoning would be more likely to benefit from pictorial mapping of literal senses of idioms. The purpose of this study is to provide educators with guidelines to choose the appropriate idiom teaching technique for EFL learners taking into account the learners’ metaphorical competence level and their cognitive style preferences. For this reason, this study will address several questions regarding the appropriate idiom comprehension technique for Turkish speaking EFL learners.

The main research questions will include:

Do differences exist among teaching techniques (intervention) on learning and recalling after controlling for metaphorical competence level and preferred cognitive style?

Is there any difference among teaching techniques with respect to learning and recalling scores?

Do learning and recalling of idioms vary by preferred cognitive styles of Turkish speaking EFL learners?

In conclusion, this article not only examines the appropriate teaching technique of English idioms for EFL learners but also evaluates the learning and recalling scores of idioms in EFL learners after controlling for metaphorical competence level and preferred cognitive style.

2. Methodology

2.1. Participants

A group of volunteers, third grade university students of English Language Education Department participated in the study. All the participants’ native language was Turkish. They have been learning English for nearly 10 years since middle school. Their age ranged between 21-24 years. The duration of exposure to English in a week in school was 25-30 hours, outside the school was 15-20 hours. 84 female, 72 male students attended the study. The intervention groups gathered randomly. Intervention groups comprised 51, 52 and 53 participants respectively in context-out, context-in and mental imagery groups.

2.2. Procedure

In evaluating the appropriate teaching technique, three different techniques (context out, context in and mental imaging technique) were used. The participants were presented 50 idioms chosen from the lists of frequently used idioms by Grant (2007), Liu (2003) and from Tran (2013) (see appendix).

As the first technique, context out, idioms were taught with their definitions in the dictionary without additional contextual support. As the second technique, context in, in an attempt to investigate the effect of contextual support, idioms were both presented in a sentence and with their definitions. As the third technique, mental imaging technique, in an attempt to investigate the effect of Dual Coding approach,
both pictorial representations of a mapping of literal senses of each idiomatic expression and verbal support (the definition of the idiom and the sentence in which the idiom is used) were used concurrently.

Many second language acquisition researchers argue that literal meaning may be assessed more easily by language learners as they do not have the same sociocultural exposure as native speakers have (Abel, 2003; Cieślicka, 2013). For this reason in mental imaging technique, rather than figurative senses of each idiom, literal senses of each 50 English idioms were illustrated by an artist. (Fig-1)

The comparisons among techniques were done taking into account the learner’s metaphorical competence level and their cognitive style preferences.

Assessment Tests

Idiom Comprehension Task

All participants were asked to complete the ‘Idiom Comprehension Task’. The task was used three times, first before the intervention (Pretest) to evaluate the participants’ metaphorical competence level, in other words participants’ knowledge of frequently used 50 English idioms. Secondly, after the three kinds of interventions (context out, context in and mental imaging technique) to evaluate the effective technique in learning of English idioms for EFL students (Post-test 1); and finally the task was used as the third time, two months after the invention to evaluate the recalling of English idioms (Post-test 2). Idiom Comprehension Task was structured with the selected 50 idioms. The task comprised three parts. In the first part, which consists 20 items, students were asked to complete the missing parts of idioms according to the given definition. In the second part, which consists 15 items, students were asked to use the given idioms in their correct situations and in the third part, which consists 15 items, students were asked to match the idioms with their meanings.

A score of 1 was given for the correct answers and score 0 was given when the answer was wrong. Total score was calculated out of fifty for each student.

The students each time spent one class hour on the Idiom Comprehension Task. Each time, the task was done individually, in the classroom, under the supervision of the researcher.

Preferred Cognitive Style Test

All the participants answered 20 questions about their preferred cognitive style of learning adopted from Boers et al. (2009). The questions were posed on a Likert scale from 1 to 4 stating: 1) almost never 2) sometimes 3) often 4) very often. The scores were calculated for preferred cognitive styles. For each participant, both visual and verbal preference scores were calculated by addition of Likert scores obtained from designated questions in two categories.

Statistical Evaluation

After recording the data digitally, all data was transferred to software (PASW Statistics vers. 18). Descriptive statistics was held to evaluate the group properties. Repeated measures ANCOVA was used to evaluate the difference between the intervention groups after controlling for Pretest and preferred
style (Visual or Verbal). As a post-hoc, Sidak test was used to explore the source of difference within the groups. Levene test was used to evaluate the variance homogeneity assumption. Post-test1 and Post-test 2 were used as dependent variable and pretest scores and visual and verbal learning preference scores were covariates.

ANOVA was used to evaluate the within groups differences, without the effects of covariates Pretest and Preferred cognitive style in three intervention groups. Levene test was used to evaluate the variance homogeneity assumption. Pretest, Post-test1 and Post-test2 scores were used as dependent variables. Intervention groups was the grouping variable.

3. Results

3.1. Repeated Measures ANCOVA results

There was a significant effect of intervention (Context-out, Context-in, Mental Imagery) on Post-test 1 scores (Context-out mean: 28.69 ± 3.34, Context-in mean: 32.83 ± 2.70, Mental imagery mean: 36.36 ± 2.25) and Post-test 2 scores (Context-out mean: 27.94 ± 2.82, Context-in mean: 30.29 ± 2.58, Mental imagery mean: 36.47 ± 2.19) after controlling for the Pretest score and preferred cognitive style either visual or verbal, $F(2,150) = 168.662, p<0.001$. (Table-1-2) (Fig-1-2)

Fig 1: The graph shows the scatter plot diagram of the Post-test 1 scores of the 3 intervention groups.
Table 1 Mean and SD Data of the Intervention Groups

<table>
<thead>
<tr>
<th></th>
<th>Context-out</th>
<th></th>
<th>Context-in</th>
<th></th>
<th>Mental Imagery</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Pretest</td>
<td>51</td>
<td>9.78</td>
<td>6.63</td>
<td>52</td>
<td>8.31</td>
<td>4.73</td>
</tr>
<tr>
<td>Posttest1</td>
<td>51</td>
<td>28.69</td>
<td>3.34</td>
<td>52</td>
<td>32.83</td>
<td>2.70</td>
</tr>
<tr>
<td>Posttest2</td>
<td>51</td>
<td>27.94</td>
<td>2.82</td>
<td>52</td>
<td>30.29</td>
<td>2.58</td>
</tr>
</tbody>
</table>

SD: Standard Deviation

While, the covariate Pretest score was significantly related to Post-test 1 and Post-test 2 scores, $F(1,150) = 5.879, p=0.017$; preferred cognitive style either visual or verbal did not have significant effect on Post-test 1 and Post-test 2 scores, $F(1,150) = 0.98, p = 0.32$, $F(1,150) = 0.236, p = 0.63$ respectively. (Table-2) (Fig-1-2)

![Scatter Plot for Post-test 2](image)

Fig 2: The graph shows the scatter plot diagram of the Post-test 2 scores of the 3 intervention groups

Table 2 Repeated Measures ANCOVA results of Post-test 1 and 2 controlled for Covariates

<table>
<thead>
<tr>
<th>Tests of Between-Subjects Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformed Variable: Average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3448.065</td>
<td>1</td>
<td>3448.065</td>
<td>342.656</td>
<td><0.001</td>
<td>0.696</td>
</tr>
<tr>
<td>Verbal</td>
<td>2.371</td>
<td>1</td>
<td>2.371</td>
<td>0.236</td>
<td>0.63</td>
<td>0.002</td>
</tr>
<tr>
<td>Pretest</td>
<td>59.16</td>
<td>1</td>
<td>59.16</td>
<td>5.879</td>
<td>0.017</td>
<td>0.038</td>
</tr>
<tr>
<td>Visual</td>
<td>9.866</td>
<td>1</td>
<td>9.866</td>
<td>0.98</td>
<td>0.32</td>
<td>0.006</td>
</tr>
<tr>
<td>Intervention</td>
<td>3394.408</td>
<td>2</td>
<td>1697.204</td>
<td>168.662</td>
<td><0.001</td>
<td>0.692</td>
</tr>
<tr>
<td>Error</td>
<td>1509.413</td>
<td>150</td>
<td>10.063</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2. ANOVA results

In comparison of Pretest scores, there was no significant difference among the intervention groups \((F(2, 153) = 1.835, p = 0.163)\), where the context-out group mean \((9.78 \pm 6.63)\), context-in group mean \((8.31 \pm 4.73)\) and mental imagery group means \((8.06 \pm 2.80)\) were elucidated. (Table-1) (Table-3-4)

In comparison of Post-test 1 scores, there was significant difference among the intervention groups \((F(2, 153) = 98.252, p < 0.001)\). A post hoc Tukey test indicated a significant difference among the context-out group \((28.69 \pm 3.34, p < 0.001)\), context-in group \((32.83 \pm 2.70, p < 0.001)\) and mental imagery group \((36.36 \pm 2.25, p < 0.001)\). (Table-1) (Table-3-4) (Fig-1)

Table 3 Table shows the results of the variance analysis of the indicating significant difference in Post-test scores among the groups.

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest</td>
<td>Between Groups</td>
<td>89.901</td>
<td>2</td>
<td>44.951</td>
<td>1.835</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>3748.535</td>
<td>153</td>
<td>24.500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3838.436</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test 1</td>
<td>Between Groups</td>
<td>1531.716</td>
<td>2</td>
<td>765.858</td>
<td>98.252</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>1192.611</td>
<td>153</td>
<td>7.795</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2724.327</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-test 2</td>
<td>Between Groups</td>
<td>2029.982</td>
<td>2</td>
<td>1014.991</td>
<td>157.386</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>986.704</td>
<td>153</td>
<td>6.449</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3016.686</td>
<td>155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In comparison of Post-test 2 scores, there was significant difference among the intervention groups \((F(2, 153) = 157.386, p < 0.001)\). A post hoc Tukey test indicated a significant difference among the context-out group \((27.94 \pm 2.82, p < 0.001)\), context-in group \((30.29 \pm 2.58, p < 0.001)\) and mental imagery group \((36.47 \pm 2.19, p < 0.001)\). (Table-1) (Table-3-4) (Fig-2)
Table 4 Table shows the Tukey Post-hoc test results scores among the groups.

Multiple Comparisons

<table>
<thead>
<tr>
<th>Dependent Variable(I) Method</th>
<th>(J) Method</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest</td>
<td>Context-out</td>
<td>-1.47662</td>
<td>.97548</td>
<td>.287</td>
<td>-0.8321</td>
<td>3.7853</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>1.72771</td>
<td>.97091</td>
<td>.180</td>
<td>-0.5702</td>
<td>4.0256</td>
</tr>
<tr>
<td></td>
<td>Context-in</td>
<td>1.47662</td>
<td>.97548</td>
<td>.287</td>
<td>-3.7853</td>
<td>.8321</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>.25109</td>
<td>.96614</td>
<td>.963</td>
<td>-2.0355</td>
<td>2.5377</td>
</tr>
<tr>
<td></td>
<td>Context-out</td>
<td>-1.47662</td>
<td>.97548</td>
<td>.287</td>
<td>-3.7853</td>
<td>.8321</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>.25109</td>
<td>.96614</td>
<td>.963</td>
<td>-2.0355</td>
<td>2.5377</td>
</tr>
<tr>
<td>Post-test 1</td>
<td>Context-out</td>
<td>-4.14065*</td>
<td>.55022</td>
<td>< 0.001</td>
<td>-5.4429</td>
<td>-2.8384</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>-7.67222*</td>
<td>.54764</td>
<td>< 0.001</td>
<td>-8.9683</td>
<td>-6.3761</td>
</tr>
<tr>
<td></td>
<td>Context-in</td>
<td>-1.4065*</td>
<td>.55022</td>
<td>< 0.001</td>
<td>5.4429</td>
<td>-2.8384</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>-3.53157*</td>
<td>.54495</td>
<td>< 0.001</td>
<td>-4.8213</td>
<td>-2.2418</td>
</tr>
<tr>
<td></td>
<td>Context-out</td>
<td>-7.67222*</td>
<td>.54764</td>
<td>< 0.001</td>
<td>8.9683</td>
<td>-6.3761</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>3.53157*</td>
<td>.54495</td>
<td>< 0.001</td>
<td>4.8213</td>
<td>2.0355</td>
</tr>
<tr>
<td>Post-test 2</td>
<td>Context-out</td>
<td>-2.34729*</td>
<td>.50047</td>
<td>< 0.001</td>
<td>-3.5318</td>
<td>-1.1628</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>-8.53052*</td>
<td>.49813</td>
<td>< 0.001</td>
<td>-9.7095</td>
<td>-7.3516</td>
</tr>
<tr>
<td></td>
<td>Context-out2.34729*</td>
<td>.50047</td>
<td>< 0.001</td>
<td>3.5318</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>-6.18324*</td>
<td>.49568</td>
<td>< 0.001</td>
<td>-7.3564</td>
<td>-5.0101</td>
</tr>
<tr>
<td></td>
<td>Context-out</td>
<td>-8.53052*</td>
<td>.49813</td>
<td>< 0.001</td>
<td>9.7095</td>
<td>7.3564</td>
</tr>
<tr>
<td></td>
<td>Imagery</td>
<td>6.18324*</td>
<td>.49568</td>
<td>< 0.001</td>
<td>7.3564</td>
<td>5.0101</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.

4. Conclusion

The results of the study indicate that differences exist among teaching techniques on learning and recalling after controlling for metaphorical competence level and preferred cognitive style in Turkish speaking EFL learners.

Mental imagery technique, is the most effective technique in learning and recalling of idioms for EFL learners. With respect to Post-test 1 scores, in other words the learning rates, the best results were found in the Mental Imagery group, followed by the context-in group. The worst results were obtained in the context-out group. This states that the best technique in teaching idioms is the mental imagery technique. What is more, Post-test 2 scores, in other words the recalling rates, are better preserved in the mental imagery group compared to the scores found in the context-out and context-in groups. These results imply that, idioms which were taught using both verbal and visual inputs simultaneously (Dual Coding approach), are better learned and recalled compared to other mono-modal techniques.

The pretest and preferred cognitive style scores were used as covariates in the methodological design to explore the expected effects on learning and recalling of idioms. Without this model, it would not be possible to clarify the effect of intervention on idiom learning and recalling. Despite the fact that variance analysis showed no significant difference in pretest scores among intervention groups, covariance analysis model expectedly, showed the effect of pretest scores on learning and recalling of idioms. The results indicated no effect of preferred cognitive style on idiom learning and recalling scores among intervention groups.
In this study, preferred cognitive style test was adapted from Boers et al. (2009). Boers et al. used the test for self-assessment and induction of awareness. However, in this current study this test was used as a quantitative measure of visual or verbal preference in learning. This has an advantage of statistical evaluation facilitating it to be used as a continuous variable. What is more, using this assessment method one can avoid categorization of preferred cognitive style in only two categories and provides a more realistic and natural approach of assessment of preferred cognitive style.

Cuevas (2016) examined two alternate learning models, learning styles and dual coding, which forecasts how auditory and visual stimuli were processed. The results of his study indicates that although learning styles is widely accepted, the model is not accurate and has no influence on student learning according to the majority of empirical research. On the other hand Dual Coding is more supported by empirical research but it is less known and used in practice. Cuevas (2016) emphasized that in learning styles model, learning is enhanced when instruction is matched to the learner’s preferred modality, in contrast, in dual coding model when learners encounter visual information with linguistic stimuli all learners regardless of their preferred modality learn more effectively. The results obtained in this study is in consistence with the Cuevas (2016) supporting the view that Dual Coding approach has a facilitative role in learning and recalling regardless of preferred cognitive style.

The cognitive linguistic view suggests that the meaning of most of the idioms are not arbitrary but rather based on the conventional facts (Kovecses, 2010). Cognitive linguists assume that the meaning behind all metaphorical language originates from language speaker’s knowledge of and personified experience with their physical environment (Gibbs, 1994; Gibbs & Colston, 2012). Gibbs (2006) stated that personification directs the people’s comprehension and cognition. The results of the current study supports the idea that concreteness have a facilitative effect on comprehension and retention of idiomatic expressions.

Vasilijevic 2013 studied the effect of learner generated illustrations of literal meaning of the given idioms combined with verbal definitions compared to verbal definitions only. Their results indicated that pictorial support of the literal meaning facilitated retention of idiom form but not the figurative meaning. In contrast with this study, the findings of the current study shows facilitative effect of pictorial representation of literal senses and verbal support on learning and recalling of figurative meanings of idioms.

Consequently, in this study it is found that mental imaging technique as creating a link between literal and figurative senses of idioms has a facilitative effect on the learning and recalling of idioms. Also, Dual Coding approach has a positive effect on the learning and recalling of the idiomatic expressions as it provides simultaneous verbal information with mental image which creates a supplementary pathway for recollecting the verbal information.
Funding: None

Disclosure statement: No potential conflict of interest was reported by the author.

Acknowledgement: Part of this study was presented with the title “Assessing Turkish-speaking EFL Learners’ Comprehension of Idiomatic Expressions Through Idiom Comprehension Techniques” at The Three Rivers TESOL 2016 Fall Conference at the Slippery Rock University Language Center, on October 22, 2016 in Pittsburgh, USA.

References

APPENDIX

List of Chosen Frequently Used Idioms

Make it big

Draw the line between

A rule of thumb
A long face
Snowed under
On top of the world
In your shoes
If all else fails
Out of blue
Hit the sack
Hurt a fly
Be your bread and butter
Speak your mind
A piece of cake
Make up one’s mind
Not my cup of tea
Down to earth
Middle of the road
Over the moon
Get the bottom of things
Thinking on my feet
Push the envelope
Bits and pieces
Be over one’s head
Take one’s word for it
Down the line
Have second thoughts
I can take it or leave it
Lift a finger
Paint a picture
A know-it-all
Under the weather
Make yourself at home
Drop me a line
Have a ball
Odds and ends
At the end of the day